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Investigations into the behaviour of the gas flow behind spherical or cylindrical 
blasts have shown that secondary shocks arise within the original detonation 
gases. The secondary shock, at first wmk, is carried outward with the expanding 
gclees. Subsequently it strengthens and bends back toward the origin, arriving 
there with high intensity. 

By using some recently developed techniques in shock dynamics and extending 
them where necessary, a theory is developed by which the motion of the main 
shock wave, as well aa the formation and subsequent motion of the secondary 
shock, are given by explicit formulae. In  addition, a method for determining, 
also by explicit formulae, the location of the contact surface between the 
detonation gases and the outside atmosphere is given. The results of a specific 
problem, which has been solved by numerically integrating the total equations 
of motion, and has also been checked experimentally, a m  compared with the 
results of the present theory. 

1. Introduction 
Recent theoretical and experimental studies of spherical and cylindrical blast 

waves (Boyer 1960; Brode 1957,1959; Shardin 1964; Wecken 1950) enable us to 
give the following qualitative description of these proceasea. Assume that at time 
t = 0 a gas sphere (or cylinder) of radius z = z, under high internal pressure, 
p = pr,  is in a still air atmosphere at preaaure p = p, (pa % p,). The namea ‘gas’ 
and ‘air’, reapectively, wil l  henceforth be used to describe the fluids init idy 
within and Outside this sphere. For t > 0, an equalization (explosion) process 
takea place. At the initial point t = 0, z = z,, the region z 2 0, t > 0 can be 
separated into five domains (figure 1): (0) undisturbed air; (1) air which has been 
overtaken by the main blast wave; (2) nearly uniform region outside the main 
expansion; (3) gas in the main expansion region: (4) gas not yet disturbed by the 
expamion. The gas in region (2) and the air in region (1) are separated by a contact 
h n t .  Also, a secondary shock develops and separates regions (3) and (2). 

The intereating phenomenon of a secondary shock appears only in spherical 
(md cylindrical) flows and does not arise in one-dimensional shock-tube studies. 
For the latter the main shock and the expansion come into an instantaneous 
equilibrium, being separated by a region of uniform pressure and velocity. The 
physical reason for the secondary shock formation is that the high-pressure gas, 
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upon paasing through a spherical rarefaction wave, must expand to lower pres- 
surea than those reached through an equivalent one-dimensional expansion. 
This is due to the increase of volume. Because of this ‘over-expansion’, the 
pressurea at the tail of the rarefaction wave are lower than the pressures trans- 
mitted back by the main shock, and a compression, or second shock, must be 
inserted to connect the two phases. By mathematical reasoning the situation 
is further clarified: the centred expansion is accomplished through the negative 
characteristics (of slope a’xldt = u - a, where u is particle velocity and a is sound 
speed). The characteristics at the head of the wave point in the decreasing x- 
direction (subsonic flow), and they then fan around to the increasing x-direction 
aa the velocity increases. Negative characteristics are also reflected from the 
main shock, but as the shock expands it becomes weaker and these character- 
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FIGURE 1. Explosion flow diagram. The indicated regione are: (0) undisturbed air; 
(1 )  air overtaken by main blest Wave; (2) ges which hes paseed through eecondery shock; 
(3) expanding ges; (4) undisturbed gee. 

istics incline more and more toward the decreasing x-direction. Hence, charao- 
teristics of the same family, but arising fiom two Werent sources, will tend to 
intersect. This is prevented by the secondary shock. A similar situation arises 
in one-dimensional flows when a shock moving down a uniform tube meets an 
area change (Friedman 1960). The shock strength is attenuated, and character- 
istics reflected from the shock will be bent. They will meet the characteristics 
of the same family which originated in the uniform section of the tube unless a 
secondary shock is inserted. 

This reasoning in terms of characteristics leads directly to a method for 
determining explicitly the path of the secondary shock. It is ertsily shown 
(Courant & Friedrichs 1948, p. 159) that the slope of a weak shock, at each point, 
is nearly equal to the average of the slopes of the incoming characteristics at 
that point. Using this fact, Whitham (1952) developed a technique for obtaining 
a differential equation for the shock path. This technique is used with the present 
problem to get the initial motion of the secondary shock. 

As the secondary shock movea outward it strengthens, and the above ‘weak 
shock ’ theory is no longer applicable. In order to follow further shock develop- 
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ment, a relation obtained by Chisnell (1957) and amplified by Whitham (1958) 
is introduced. Chisnell considered a shock wave moving in a channel with 
varying cross-sectional area and derived an analytic expression which gives the 
relation between the channel area and shock strength. For the present analysis 
the channel area is identified with the shock s ~ f a ~ e  area, and hence is related 
to the shock radius. Whitham simplified and extended Chisnell’s analysis by 
ahowing that the ‘shock-area’ relation can be obtained by the following method: 
the differential relation which is to be satisfied by the flow quantities along a 
ohmacteristic coming into a shock is applied to the flow quantities just behind 
the shock; then, ifthey are expressed in terms of the shock strength, a differential 
equation is obtained relating changes in shock strength and radius. This differ- 
ential equation can be integrated, if the flow ahead of the shock is uniform, to 
give Chisnell’s result. The inward-facing secondary shock of the present problem, 
however, haa ahead of it the non-uniform expanding gas. Here the shock motion 
&pen& not only on its radius but also on the flow conditions immediately 
ahead of it. Whitham’s derivation of the ‘shock-area’ relation is extended to 
include this situation. The secondary shock is therefore obtained in two segments 
which take into account its changing nature from very weak, initially, to quite 
strong when it finally implodes at the origin. When it is weak, the average slope 
technique will be used to describe its motion until the shock strength becomes too 
large. From this point on, the extended shock-area rule is used. 

The determination of the main shock wave separating regions (0) and (1) is 
much simpler than that of the secondary shock. This is because the flow ahead 
of the main shock in region (0) is uniform, and direct application of the inte- 
grated form of the shock-area relation susces to give the shock strength and 
location. It should be emphasized that the shock-area relation is expected to be 
agood approximation in this problem because the shock weakens primarily due to 
its increased surface area; in the one-dimensional case its strength would remain 
oonstant. This is in contrast to the Taylor blast-wave problem, for example, 
where the weakening effect of disturbances from behind is equally important. 

Flow properties arising at the main shock are propagated back into the 
interior along the negative characteristics. These cross the contact front and are 
altered upon entering the gas. In  order to determine the flow changes at the 
contact front it is necessary to determine the path of the front. Toward this end 
a differential equation, obtained in a similar manner to the one describing the 
weak shock path, has been derived, i.e., the motion of the contact front is pre- 
scribed by known flow properties on characteristics meeting it. 

A t  some places in the present analysis the additional entropy changes above 
those in the one-dimensional problem will be neglected. This will not affect the 
oalculatione in the expansion region (3) since the expansion is isentropic, nor in 
the initial portions of region (2) since the flow here has passed through the weak 
mtion of the secondaq shock. For determination of the shocks by application 
of the shock-area rule, entropy effects are correctly included in the shock 
mnditions. It is seen then that the only place where neglect of entropy changea 
oould eeriouely affect the calculationR is in following the flow properties from the 
main shock through region (1) to the contact front. 

1-2 
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The slope of the secondary shock, when it initially forms and moves outward, 
is determined by the slopes of the negative characteristics of regions (3) and (2) 
which meet it. In  $ 2  an approximate solution for the flow in the expansion 
region (3) is determined. Since the flow near the initial point can be accurately 
described by one-dimensional shock-tube theory, a solution in region (3) which 
includes three-dimensional effects is obtained by perturbing about the known 
one-dimensional solution. This improved solution is used to give negative charac- 
teristics in region (3), and these are in turn used for the determination of the 
initial motion of the secondary shock. In  addition, this solution gives information 
about the incoming flow which is required for use with the shock-area rule when 
the secondary shock strengthens. The negative characteristics for region (2) 
originate at the main shock, move through region (1) and have a discontinuity 
in slope upon crossing the contact front. For determination of these character- 
istics, the main shock and negative characteristics reflected from it must first 
be found; this is accomplished in Q 3. The contact front and its affect on charac- 
teristics crossing it is discussed in Q 4. Here a differential equation is determined 
by which the path of the contact front is given in terms of known flow quantities. 
In  Q 5 the results of the previous sections are utilized to give the motion of the 
secondary shock. Here both the weak-shock theory and the extended shock-area 
rule are presented. A specific problem involving a spherical blast is treated in 
$ 6, and the results are compared with other solutions to this problem. 
As a consequence of the form of the shock-area relation, the x and t co-ordinates 

of the main shock are determined parametrically as functions of shock Mach 
number. Similarly, since the contact front and secondary shock are determined 
by extrapolation of the known flow conditions at the main shock, their co- 
ordinates are also determined rn parametric functions of the main shock Mach 
number. Therefore, starting at the initial point with the known main shock 
Mach number, small incremental steps in this Mach number are made. Corre- 
sponding to each increment, a point on the main shock, contact front and 
secondary shock are determined. The present analysis will describe the motion 
of the secondary shock as it  initially move8 outward and until it finally implodes 
at the origin. Beyond that time, its motion cannot be given by this theory. 
Similarly, this time wiU roughly delineate the region of validity for the main- 
shock and contact-front approximations. 

2. Expansion region 
Immediately after detonation, the high-pressure gas in region (4) of figure 1 

is penetrated by a centred expansion fan and moves rapidly outward. This 
expansion, region (3), is isentropic and satisfies the following flow equations 
written in characteristic form: 

1 
--ua,-&ua, ) +&-a) ( y : l % - t % ) + ~ = 0 9  - 

(Y-1 
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where n = 1,2 for cylindrically symmetric flows and spherically symetricm 
flows, reepectively, and where y is the ratio of specific heats. The flow variables 
a and u, the sound speed and particle velocity, and also the independent variables 
2 and t, the radial distance and time, are all assumed to have been made dimen- 
sionless aa follows: 

a = Zla,, u = iila,, x = Z/xo, t = rSa,/xo. 

Barred quantitiea are true physical variables, a,, is the sound speed outside the 
blast wave in region (0 )  of figure 1, and xo is the initial blast radius. 

An approximate solution to equations (1) and (2) is obtained by perturbing 
about a one-dimensional centred expansion wave, whose solution can be given 
explicitly (Courant t Friedricks 1948, p. 104). This approximation holds 
exactly aa the initial point x = 1, t = 0 is approached. We first define 

a = al+a,, u = u1+u2, 

I 1 
s = -al - iu,, 

Y - 1  (3) 
1 1 R = -a,+&u2, S = - 

Y-1 Y-1 
where the variables with subscript 1 are solutions to the one-dimensional centred 
expansion problem (equations (1) and (2) with n = 0); that is, 

5- 1 
u1= 2 p + ( l - p ) 7 ,  1 
a, = p(2r-x+), ,u = Y - 1  - + 1 ,  r = const., 

(4) 

2 - 1  
B = (1-2p)r-(l-p)- 

t *  

Substituting (3) and (4) into (1) and retaining first-order terms, we obtain, as 
an equation for R, 

nulal = 0, + (% + a,) R* + 22 

or 2xdR = -- ax _ -  -- dt 
t 4prt+(1-2p)(x-T) ntulal' 

The h t  relation in (6) gives, for the curvilinear positive characteristics, 

(6) 
x-1 -- 2r = - Kk2P, or altar = Kp, 

t 

where K is a constant for each characteristic. 

positive characteristics 
Using (6) to eliminate x, we obtain the differential equation for R along the 

dR - = - _  n,uK[2r-(l-p)Kt-2a]t-2~ 
dt 2[1 +t(2r-Kt-2~)] * 

(7) 

It does not seem possible to integrate this equation for arbitrary p. However, 
ER certain specific values ctn integral in closed form is possible. The integration 
h p  = + and i, corresponding to y = p and 9, can be carried out, but with the 
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present appro&mate theory the added complexity of the exact integral does not 
seem justified. The expreasion on the right-hand side of (7) is therefore simplified 
by assuming the bracketed term in the denominator equal to 1. This implies that 
the characteristic remains cloae to the line x = 1, which is roughly correct except 
for very high intanaity blast  wave^. On this assumption we have 

which can be integrated to give 

Eliminating K by mans of (6), we get 

The arbitrary function f (a, tap) ,  constant along each positive characteristic, 
and the constant r are determined by continuously connecting (y - 1)-l a + iu 
across the boundary characteristic between regions (3) and (4). Since we shall 
assume (4) to be a region of uniform flow with u, = 0 and a, constant, the 

2 - 1  =-a'& (9) boundary characteristic is 
For this cme we would have 

The second equation in (10) is obtained by requiring R to vanish at the boundary 
between regions (3) and (4). It is clear that by properly choosing the arbitrary 
characteristic function f (a,t+) appearing in equation (8j, a more general boundary 
condition could be satisfied. Combining (8) and (10) we have, for region (3), 

1 1 - a, + 3u3 = - a, + tH(a,), 
Y-1 Y-1 

The second-order terms in the negative characteristic approximation are 
obtained by substituting the relations (3) and (4) into the negative characterhtio 
equation (2), the equation obtained for 8 being 

(12) 
t8 ,+(~-1)8,+[(2p-1)R+S]+- n%%t = 0, 

22 

where R = tH(a,)  and H is defined in (11). Writing (12) in characteristic form, 
we have at ax as 
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The h t  of equatiom (13) gives, for the characteristics, the linee z- 1 = Lt, 
with L constant along each characteristic. Along the characteristics, (13) &o 

Since u, and a, are constant along the characteristic lines, (14) can be integrated 
immediately to give 

s = 

Letting L = (z- l)/ t  and using equation (4), we have 

z-l (1--2p)tH(+ ~ 

1 
--a3-&.43 = (1-2p)r-(l-p)-+- 
Y-1 t 2 2(x - 1 ) Z  

[z- 1 -logz]. 

(15) 

The equation for the negative characteristics can now be determined. The 
loweat-order approximation for this is z = 1 + Lt; however, by u88 of the above 
mults, a more exact solution is obtained. Taking a proper linear combination 
of (11) and (15), we get, for the negative characteristic slope, 

(16) 
x-1 1-2p nu, a, t 

+-tH(a ) u3-a3 = - [z - 1 -log z]. 
+2(1-p)(x-1)2 t 2-2p 

To facilitate integration, the right-hand side of (16) is simplified by assuming 
that z = 1 + Lt and that u,, a, and L are constant along the negative character- 
btics. This gives 

or, if we let L = (z- l)/t in the last term, 

where H(a,) is given in equation (1 1). Since the logarithmic term in (16) does not 
vary much, an approximate integration waa used to obtain (17). 

Equations (ll), (16), (16) and (17) will be used for describing the flow in 
region (3). 

3. Main shock and region (1) 

as dependent variables, are 
The characteristic equations (1) and (2), written with pressure and velocity 

(18) 
Pa%% Pl +Paul + (u + 4 (2% +Pa%) + 5 = 0, 

p, -put  i- (u - a )  ( p,  -pau,) + pa+ = 0. 
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When written in this form, the equations are valid whether or not the flow is 
iaentropic. 

Since the positive characteristics are the ones coming into the main shock, 
equation (18)  is used in an application of Whitham's rule (given in 6 1 )  for the 
determination of the shock motion. We write ( 1  8) in the form 

pa%nax 
d p + p a d u  = ---. 

u+a x 

At the shock the Hugoniot relations are 

u = 2% ( M - M - I ) ,  p = -& ( 2 y M 2 - y +  l), 

p = ( y T M G '  

Y + l  Y + l  

Po(Y + l ) M a  a2 = a t ( 2 y M 2 - y +  ___ l ) { M 2 ( y -  1 ) + 2 }  
(y  + 1)2M2 

9 

where M = U/a,,  U is the shock velocity, and subscript 0 refers to values ahead 
of the shock (region (0)  in figure 1). Substituting them relations into (20)  we 
obtain a differential relation between the shock Mach number and its radius 5,: 

dxm 4M 2(M2 + 1) 
(2yM2 - y + 1 + M J ( [ 2 y N a  - y + 11 [M2(y  - 1 )  + 21) 

-n- = dM 
Xrn 

This can be integrated to give 

2 ( 2 y M 2 - y  + 1 )  - (7 - 1 )  [ (y - 1 )  M 2 +  21 
M"y + 1 ) 2  

-)] = const. sin-' { 1 

(23)  

Using the dimensionleas co-ordinates introduced in (3) ,  we relate t, and M, 
along the shock, by 

Mdt,  = ax,,,, 

with dx, defined in equation (22) .  
The motion of the main shock &B a function of its Mach number is given by 

equations (23)  and (24)  in conjunction with an initial condition specifying its 
position and Mach number at a certain time, ordinarily the instant of detonation. 
For both spherid and cylindrical blaet waves, the initial motion is insensitive 
to the geometrical situation, and the initial shock Mach number can be deter- 
mined by use of one-dimensiond shock-tube theory. Specifically, if the gas 
inside the sphere (or cylinder) were steady with pressure p 4  and sound speed 
a,, and the outaide atmosphere were steady at p ,  and a,, the one-dimensional 
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theory would give the following relation, which the initial shock Mach number 

It wil l  be seen that the only flow property required in region (1) is the position 
of the negative characteristics, reflected from the main shock. Since the contact 
front follows closely behind the main shock, region (1) is small, and it suffices to 
approximate the negative characteristics there by straight lines. Essentially, 
this approximation neglects entropy and three-dimensionality. Effects of the 
changing shock strength, due to expansion, are propagated into region (1) by 
adjustments of the slope of each characteristic to be that value of u-a where 
the characteristic meets the shock. The characteristics are therefore 

(26) 2 = 5, + w,(M) (t - tm), 
with wl(H) = u - a evaluated at the point (xm, tm) on the main shock. 

istics behind the shock as functions of the shock Mach number M .  
Equations (23), (24) and (26) define the main shock and negative character- 

4. Contact front 
The negative characteristics arising at the main shock propagate through 

region (1) and meet the contact front separating the gas in region (2) from the 
air in region (1). At this front the characteristic suffers an abrupt change in slope 
and continues into region (2). In  order to determine this slope discontinuity, 
the location of the contact front and its point of intersection with the character- 
&tic must be known. A technique for obtaining these is now developed. 
Since the contact front moves with the local particle velocity u, it  will be met 

by positive characteristics, with slope u + a, from region (2) and negative charac- 
teristics, with slope u -a, from region (1). The positive characteristic values are 
obtained from .equation (11). Although this equation was derived to give 
(y- l ) - la+*u in region (3), we shall atmume it to be applicable in region (2), 
since the secondary shock which separates regions (2) and (3) is weak where this 
approximation is made. Let Qa, Q1 and wg, w1 denote (y  - l)-l a + iu and u - a 
in regions (2) and (1) rmpectively. We have, due to continuity of velocity across 
the contact front, 1 1 

&a + -wa = &I+ y-l 
Y-1 

or 

On a particle path, we have the relation between pressure and sound speed 
a SY/(Y--~) 

24 ’= (G) ’ 
where subscript i stande for the initial state. Consequently, due to continuity 
af preesure across the contact fiont, 
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(It should be noted that in the derivation of equations (27) and (28) the aseump- 
tion has been made that y, the ratio of specifk heats, has the same magnitude in 
both regions (1) and (2). The extension to the c&88 of Werent  y is direct but not 
very simple.) We obtain the negative characteristic slopes for region (2) in 
terms of known quantities by eliminating Q, from equations (27) and (28): thus, 

Evaluation of (29) is not direct, since w, is known only as a function of main 
shock Mach number (equation (26)) and Q4 is known only as a point function 
of x and t (equation (11)). We must determine, therefore, the (z, t)-co-ordinates 
of the contact front in terms of the parameter N .  

First, a is expressed in terms of w, and Qe. Since velocity is continuous across 
the contact front, we can write 

2 
2Qg - w , =  - ag + a,, 

Y - 1  

and, combining this with the first of equations (28), 

Next, let x, = C(t,) be the equation of the contact front. The negative character- 
istic given in equation (26) meeta the contact front at the point (x,, t,). Hence, 
at this point, 

Differentiating with reepect to t,, we get 

C(tc) = xrn + w,(M) ( tc  - L)* 

ac aiw 
- = wl+-{x~+W;( tc - t , ) -wl t ; } .  4 0% 

Here primes indicate differentiation with respect to M. As the contact fkont 
moves with local particle velocity, it  follows that 

=- -  - u. ac ax, 
dt, 4 

Combining the two above equations, using w = u - a, we have 

dM 
a, = -{x;+w;(tc-trn)-wlt;}. 

&C 

Eliminating a, from (30) and (31), we obtain a differential equation relating 
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Equation (32), together with 

2, = zrn + w , ( M )  (4  - 4 7 J 7  (33) 
define the co-ordinates of the contact front (z,, t,) as functions of the parameter 
Y. With this result we have directly, for the negative characteristics in region (2), 

2 = zc+(t-tc)W,, (34) 
where t, and x, are given by (32) and (33), and wa is given by (29). 

5. Secondary shock 
We now have enough information about the flow to fit the secondary shock 

between regions (3) and (2). The negative characteristics arising in the expansion 
region (3) fan into the increasing z-direction, while those arising at the main 
shock tend to point more and more toward the decreasing z-direction. The latter 
ia due to the fact that the main shock weakens as it expands, causing the charac- 
teristic slope u, - a, to decrease. 

The secondary shock must be inserted 80 that the shock relations are satisfied; 
these are approximated, for a weak shock, by requiring its slope at each point to 
equal the average of the slopes of the characteristics meeting it. Since we have 
the equations, (17) and (34), describing the characteristics which meet the shock, 
we can, using a technique developed by Whitham (1962), obtain the shock motion. 

The characteristics which arise in the expansion fan and at the main shock 
are respectively 

- 

1 z = 1 +Lt+f(z, t) ,  

5 = z, + w*(t - tc), 
(35) 

where f(z, t) represents terms appearing in equation (17), and z,, t,, and w2 are 
functions of main shock Mach number M a s  given in equations (33), (32) and (29). 
Assuming the secondary shock path to be given by 

we have along the shock path 
x, = 1 +S(t,), 

Expreasing the shock slope as the average of the characteristic slopes as obtained 
from (35), we obtain 

L +fi (37) 

Letting the parameters iK and L and the variable z, all be dependent on t,, we 
om obtain another repreaentation for dS/dt,, using (35) and (36); with primes 
representing differentiation with reapect to M, this is 

When oombined with (37), this equation yields 
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Eliminating L from (38) by use of (36), we obtain, after working through some 
algebra and integrating with respect to M, a relation between t, and M: 

(39) 

Here, f(x, t) andf,(x, t )  are evaluated at x = z, + (t,  - t,) w2, t = t,; Mt is the initial 
Mach number of the main shock wave. Equation (39) is solved by an iterative 
numerical technique; since for a fixed M the right-hand side of (39) increases 
monotonically with t, and the left-hand side is a function of M alone, it is possible, 
for each increment in M ,  to solve for the correaponding t,. Once ts is determined, 
x, is given by 

(40) 

1 fz + - {x: + ~ i ( t ,  - tc) - wzt;} d M .  
tS  

X8 = 2, + w& - t,). 

It should be noted that the secondary shock doea not form at the initial point 
of the fluid flow field, t = 0, x = 1. By taking the limit M -+ Mi in (39), the time 
of shock formation ti is obtained; its position is given by (40). If one neglects the 
expansion-region correction term f in (39), the initial time can be given explicitly 
as ti = (w2t~-x~) /w~;  otherwise an iterative procedure must be used. For the 
problem given in the next section, the explosion of a sphere of gaa at ambient 
temperature and a pressure ratio of 22, the point of shock formation was found 
to be xi = 1.43, ti = 1.40 when the correction term f was neglected; and X~ = 1-14, 
ti = 0.41 for the full equations. 

The technique described above, while useful to describe the initial motion of 
the secondary shock, is valid only when this shock is still weak. In  the present 
situation, however, this shock strengthens as it is carried outward by the ex- 
panding gases and another method must be used to describe its subsequent 
motion. (The change-over point for a specific problem was arbitrarily chosen to 
be either when the shock begins to turn back toward the origin or when the shock 
strength becomes of magnitude unity, whichever comes first. Shock strength is 
defined in this case aa a - 1, where 

The method used in $3, when altered to account for the non-uniform flow 
ahead of the secondary shock, is applicable for describing the later motion of 
this shock. In  order to extend the formulation of $ 3, we start with the character- 
istic differential relation corresponding to (20). Since the negative character- 
istics me the ones coming into the shock, we use 

is the secondary-shock Mach number.) 

pa2un dx 
u-a x 

dp-padu = ---. 

The Hugoniot relations given in (21) are used with the variables a,, p,, p, replaced 
by a,, p,, pa. Also, the velocity relation is altered to account for the fact that the 
shock is backward facing and the flow in region (3) is non-stationary, giving 
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where a = (us- &)/a,, and & is the secondary shock velocity. Substituting 
these relations into (41), we obtain equations which hold along the secondary 
shock: 

V,  = u3-Ba,; 
dt -& = U;', 

with R = J{(2yB2-y+1) ( lR2(y-1)+2) ) .  

The quantities u,, a3 and their derivatives are obtained from equations (1 1) and 
(16). Equations (42) are solved stepwise from a given point where 2, t ,  and Us 
or B are prescribed. 

6. Application to a specific problem 
We shall describe here the application of the present theory to a specific 

problem which haa been solved theoretically by Brode (1957), and investigated 
experimentally by Boyer (1960). A sphere of radius 1, containing a gas at 22 atm. 
and at a temperature of 299" K, is assumed to be surrounded by air at 1 atm. 
and the same temperature. The compressed gas is also air, and the ratio of 
specific heats y is assumed to equal 1.4 everywhere. The initial Mach number 
of the main shock, as determined by one-dimensional shock tube theory, is 1.846. 
With this, the constant on the right-hand side of the main shock equation (23) 
ia 26-1. For this m e  the sound speed and particle velocity, made dimensionless 
with respect to the flow in region (0), are as follows at the initial point x = 1, t = 0: 

u, = 0, 

u1 = 1.087, 

U, = 1.087, 

a, = 1, 

a, = 1.252, 

a, = 0.729, 

u, = 0, a, = 1. 

The leading characteristic of the expansion fan in region (3) is (x - l)/t = - 1. 
For region (3) we have, corresponding to  equations (ll), (16) and (17), 

t ( 5-- x;l) ( 1+- X;l)' , 
2.5~3 + 0.5~3 = 2.6 - - 

28.8 (6.11) 

%-a3 = 2- --- t 1 ;2 [ ( 5 - 7 1 )  (1 +%+) t ]  [ (1 +%+I) -2 (1 - I S ) ] ,  

(6.16) 
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The contact fiont is given by 
dt, 4 - 1 2 7 { ~ ~ + w ; ( t , - t , ) - ~ ~ t ~ }  
d M =  5a, + u, - w1 , (6.32) 

xc = zm+w,(M) (t,-t,). (6.33) 

Here wl(M) is the negative characteristic slope u - a in region (1); it is evaluated, 
as a function of the main shock Mach number M, by using the Hugoniot relations 
in equation (21). In  region (2) the negative characteristic slope wa is 

Wa = O.9O9W1 + 0*182(2*5a, + O.5Us). (6.29) 

7 XY I \ 

0 1 2 3 4 5  

2 

FIQURE 2. Experimental and theoretical spherical-blast results : ---- , experiment 
(Boyer); - , numerical integration (Brode); 0,  prosent theory; x , simplified second- 
shock approximation. 

In  figure 2 the present theory is compared with that of Boyer and Brode. The 
results of several experimental explosions carried out by Boyer are indicated by 
dashed lines. Brode’s results, obtained by numerical integration of the Lagran- 
gian equations of motion, are indicated by solid lines. The present theory is given 
by the curves composed of heavy dots. The time taken to compute the two 
shocks and the contact front on an IBM 704 was about 3 min. 

Since Boyer’s experimental work involved the bursting of a glass sphere, the 
differences between his result and Brode’s may be due to the presence of glass 
particles in the flow field. As the present model, a hypothetical sudden expansion 
of a gas sphere, is the Bame as Brode’s, it  is expected that the results be com- 
parable with his. The initial motion of the main shock and contact front as 
obtained by Brode compares quite favourably with that obtained with the 
present theory. It must be stated, however, that the present determination of 
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the main shock is based entirely on Chianell’s work. Brode shows the secondary 
shock expanding slightly more, and imploding sooner, than both the present 
theory and Boyer’s experiments. The differences in the initial motion could be 
due simply to the difficulty in interpreting data when the shock is weak. Brode, 
using the von Neumann-Richtmyer pseudo-viscosity technique, which spreads 
out the shock, might have difficulty in determining the true locations of a weak 
shock. Boyer’s experimental technique, which used the schlieren shadowgraph 
to determine the secondary shock, would have difficulty in locating weak shocks 
which give correspondingly weak shadows. As to the determination of the time 
of implosion, Lagrangian maas co-ordinates, aa used by Brode, may have lead to 
inaccuracies near the flow centre because the density there is quite low. Most of 
the maas is located near the contact front and main shock. However, since the 
present theory neglects certain entropy changes and in addition becomes less 
valid aa the distance to the initial point (z = 1, t = 0) increaaes, it is rather 
difEcult to determine precisely the muses of the small discrepancies in the 
different results. Over-all, however, the agreement is quite good. 

A simplified determination of the secondary shock is indicated by the curve 
composed of x ’a in figure 2. For this, the one-dimensional solution was used to 
describe the flow in region (3). This is given by omitting the last term in equations 
(6.11), (6.16) and (6.17), and also setting f andti equal to zero in the secondary 
shock equation (39). This approximation for the secondary shock motion agrees 
remarkably well with Boyer’s experimental work, and it may be useful for giving 
a qualitative description of the flow as it affords a marked simplification of some 
of the equations. 

This reamoh waa carried out at New York University, and was sponsored by 
AEC Contract No. AT (30-1)-1480 and Air Force Office of Scientific Research, 
Contract No. AF49 (638)-446. 

REFERENCES 
BOYER, D. W. 1960 J .  Fluid Meeh. 9,401. 
BRODE, H. L. 1967 Rand CorporatiOn, Rep. RM-1974. 
BRODE. H. L. 1969 phy8. Flu&&?, 2, 217. 
Cmsxmm, R. F. 1967 J .  Fluid Mech. 2 ,  286. 
Corn, R. & FRIEDRICHS, K. 0. 1948 SupwsOniC Flow and Shock W a w .  

New York: Interscience. 
FRIEDMAN, M. P. 1960 J .  Fhid  Mech. 8,  193. 
SEARDIN, H. 1964 C m .  Pure A w l .  Math. 7 ,  223. 
WECKEN, F. 1960 2. angew. Math. M A .  30, 271. 
W m ,  G. B. 1962 C m .  Pure A w l .  Math. 5 ,  301. 
W m ,  G. B. 1968 J .  Fluid Mech. 4, 337. 


